top of page

Publications

41. Xiao, H., Yu, H., Frew, A., Jiang, W., Wu, Y., Wang, C., Xi, B., Tan, W. (2025). Microplastics aggravate zinc deficiency-induced inhibition of physiological-biochemical characteristics in apple rootstock Malus hupehensis (Pamp.) Rehd seedlings. Emerging Contaminants, 11(1), 100421.​

​

40. Frew, A., Zheng, Y., Wang, Z., Fu, Y., Aguilar-Trigueros, C.A. (2024). Causal determinism by plant host identity in arbuscular mycorrhizal fungal community assembly. Functional Ecology. https://doi.org/10.1111/1365-2435.14715

 

39. Heuck, M.K., Powell, J.R., Kath, J., Birnbaum, C., Frew, A. (2024). Evaluating the usefulness of the C-S-R framework for understanding AM fungal responses to climate change in agroecosystems. Global Change Biology, 30(11), e17566.

 

38. Zheng, Y., Hu, Z., Jian, J., Chen, J., Osborne, B.B., Zhou, G., Xu, Q., Zheng, Z., Ma, L., He, X., Bell, S.M., Frew, A. (2024). Tree functional group mediates the effects of nutrient addition on soil nutrients and fungal communities beneath decomposing wood. Plant and Soil. https://doi.org/10.1007/s11104-024-06959-2

 

37. Frew, A., Aguilar-Trigueros, C.A. (2024). Increasing phylogenetic clustering of arbuscular mycorrhizal fungal communities in roots explains enhanced plant growth and phosphorus uptake. Microbial Ecology, 87(1), 1–8.

 

36. Frew, A., Öpik, M., Oja, J., Vahter, T., Hiiesalu, I., Aguilar-Trigueros, C.A. (2024). Herbivory-driven shifts in arbuscular mycorrhizal fungal community assembly: Increased fungal competition and plant phosphorus benefits. New Phytologist, 241(5), 1891–1899.

 

35. Birnbaum, C., Dearnaley, J., Egidi, E., Frew, A., Hopkins, A., Powell, J., Aguilar-Trigueros, C., Liddicoat, C., Albornoz, F., Heuck, M.K., et al. (2024). Integrating soil microbial communities into fundamental ecology, conservation, and restoration: Examples from Australia. New Phytologist, 241(3), 974–981.

 

34. Yu, H., Xiao, H., Deng, H., Frew, A., Hossain, M.A., Tan, W., Xi, B. (2024). Upgrade from aerated static pile to agitated bed systems promotes lignocellulose degradation in large-scale composting through enhanced microbial functional diversity. Journal of Environmental Sciences, 144, 55–66.

 

33. Wang, Z., Feng, L., Frew, A., Lu, A., Yu, Z., Huang, Z. (2024). Neighbourhood diversity effects on insect herbivory: Plant leaf traits mediate associational resistance. Journal of Ecology, 112(11), 2613–2623.

 

32. Luo, X., Zhang, R., Zhang, L., Frew, A., Yu, H., Hou, E., Wen, D. (2024). Mechanisms of soil organic carbon stabilization and its response to conversion of primary natural broadleaf forests to secondary forests and plantation forests. Catena, 240, 108021.

 

31. Frew, A., Weinberger, N., Powell, J.R., Watts-Williams, S.J., Aguilar-Trigueros, C.A. (2024). Community assembly of root-colonising arbuscular mycorrhizal fungi: Beyond carbon and into defence? The ISME Journal, 18(1), wrae007.

 

30. Field, K.J., Carrillo, Y., Campbell, S.A., Ton, J., Frew, A. (2024). Editorial: Innovation in plant and soil sciences to tackle critical global challenges. Plants, People, Planet, 6(6), 1153–1158.

​

2023___________________________________________________

​

29. Greenwood, L., Nimmo, D.G., Egidi, E., Price, J.N., McIntosh, R., Frew, A. (2023). Fire shapes fungal guild diversity and composition through direct and indirect pathways. Molecular Ecology, 32(17), 4921–4939.

 

28. Frew, A., Aguilar-Trigueros, C.A. (2023). Australia offers unique insight into the ecology of arbuscular mycorrhizal fungi: An opportunity not to be lost. Austral Ecology, 48(8), 1713–1720.

 

27. Heuck, M.K., Birnbaum, C., Frew, A. (2023). Friends to the rescue: Using arbuscular mycorrhizal fungi to future-proof Australian agriculture. Microbiology Australia, 44(1), 5–8.

 

26. Frew, A., Heuck, M.K., Aguilar-Trigueros, C.A. (2023). Host filtering, not competitive exclusion, may be the main driver of arbuscular mycorrhizal fungal community assembly under high phosphorus. Functional Ecology, 37(7), 1856–1869.

 

25. Frew, A. (2023). Water availability alters the community structure of arbuscular mycorrhizal fungi and determines plant mycorrhizal benefit. Plants, People, Planet, 5(5), 683–689.

 

24. Ng, A., Wilson, B.A.L., Frew, A. (2023). Belowground crop responses to root herbivory are associated with the community structure of native arbuscular mycorrhizal fungi. Applied Soil Ecology, 185, 104797.

​

2022___________________________________________________

​

23. Frew, A., Antunes, P.M., Cameron, D.D., Hartley, S.E., Johnson, S.N., Rillig, M., Bennett, A.E. (2022). Plant herbivore protection by arbuscular mycorrhizas: A role for fungal diversity? New Phytologist, 233, 1022–1031.

 

22. Johnson, S.N., Powell, J.R., Frew, A., Cibils-Stewart, X. (2022). Silicon accumulation suppresses arbuscular mycorrhizal fungal colonisation in the model grass Brachypodium distachyon. Plant and Soil, 477(1), 219–232.

 

21. Frew, A. (2022). Root herbivory reduces species richness and alters community structure of root-colonising arbuscular mycorrhizal fungi. Soil Biology and Biochemistry, 171, 108723.

​

2021___________________________________________________

​

20. Frew, A., Price, J.N., Oja, J., Vasar, M., Öpik, M. (2021). Impacts of elevated atmospheric COâ‚‚ on arbuscular mycorrhizal fungi and their role in moderating plant allometric partitioning. Mycorrhiza, 31, 423–430.

 

19. Frew, A., Wilson, B.A.L. (2021). Different mycorrhizal fungal communities differentially affect plant phenolic-based resistance to insect herbivory. Rhizosphere, 19, 100365.

 

18. Johnson, S.N., Hartley, S.E., Ryalls, J.M.W., Frew, A., Hall, C.R. (2021). Targeted plant defense: Silicon conserves hormonal defense signaling impacting chewing but not fluid-feeding herbivores. Ecology, e03250.

 

17. Frew, A. (2021). Aboveground herbivory suppresses the arbuscular mycorrhizal symbiosis, reducing plant phosphorus uptake. Applied Soil Ecology, 168, 104133.

​

2020___________________________________________________

​

16. Frew, A., Powell, J.R., Johnson, S.N. (2020). Aboveground resource allocation in response to root herbivory as affected by the arbuscular mycorrhizal symbiosis. Plant and Soil, 447, 463–473.

 

15. Frew, A. (2020). Contrasting effects of commercial and native arbuscular mycorrhizal fungal inoculants on plant biomass allocation, nutrients, and phenolics. Plants, People, Planet, 3(5), 536–540.

​

2019___________________________________________________

​

14. Frew, A., Price, J.N. (2019). Mycorrhizal-mediated plant-herbivore interactions in a high COâ‚‚ world. Functional Ecology, 33(8), 1376–1385.

 

13. Frew, A. (2019). Arbuscular mycorrhizal fungal diversity increases growth and phosphorus uptake in C₃ and Câ‚„ crop plants. Soil Biology and Biochemistry, 135, 248–250.

 

12. Frew, A., Weston, L.A., Gurr, G.M. (2019). Silicon reduces herbivore performance via different mechanisms, depending on host-plant species. Austral Ecology, 44(6), 1092–1097.

​

2018___________________________________________________

​

11. Frew, A., Weston, L.A., Reynolds, O.L., Gurr, G.M. (2018). The role of silicon in plant biology: A paradigm shift in research approach. Annals of Botany, 121(7), 1265–1273.

 

10. Johnson, S.N., Ryalls, J.M.W., Gherlenda, A.N., Frew, A., Hartley, S.E. (2018). Benefits from below: Silicon supplementation maintains legume productivity under predicted climate change scenarios. Frontiers in Plant Science, 9, 202.

 

9. Frew, A., Powell, J.R., Glauser, G., Bennett, A.E., Johnson, S.N. (2018). Mycorrhizal fungi enhance nutrient uptake but disarm defences in plant roots, promoting plant-parasitic nematode populations. Soil Biology and Biochemistry, 126, 123–132.

​

2017___________________________________________________

​

8. Frew, A., Powell, J.R., Allsopp, P.G., Sallam, N., Johnson, S.N. (2017). Arbuscular mycorrhizal fungi promote silicon accumulation in plant roots, reducing the impacts of root herbivory. Plant and Soil, 419(1–2), 423–433.

 

7. Frew, A., Powell, J.R., Hiltpold, I., Allsopp, P.G., Sallam, N., Johnson, S.N. (2017). Host plant colonisation by arbuscular mycorrhizal fungi stimulates immune function whereas high root silicon concentrations diminish growth in a soil-dwelling herbivore. Soil Biology and Biochemistry, 112, 117–126.

 

6. Frew, A., Allsopp, P.G., Gherlenda, A.N., Johnson, S.N. (2017). Increased root herbivory under elevated atmospheric carbon dioxide concentrations is reversed by silicon-based plant defences. Journal of Applied Ecology, 54(5), 1310–1319.

 

5. Johnson, S.N., Hartley, S.E., Ryalls, J.M.W., Frew, A., DeGabriel, J.L., Duncan, M., Gherlenda, A.N. (2017). Silicon-induced root nodulation and synthesis of essential amino acids in a legume is associated with higher herbivore abundance. Functional Ecology, 31(10), 1903–1909.

​

2016___________________________________________________

​

4. Frew, A., Powell, J.R., Sallam, N., Allsopp, P.G., Johnson, S.N. (2016). Trade-offs between silicon and phenolic defenses may explain enhanced performance of root herbivores on phenolic-rich plants. Journal of Chemical Ecology, 42(8), 768–771.

 

3. Johnson, S.N., Benefer, C.M., Frew, A., Griffiths, B.S., Hartley, S.E., Karley, A.J., Rasmann, S., Schumann, M., Sonnemann, I., Robert, C.A.M. (2016). New frontiers in belowground ecology for plant protection from root-feeding insects. Applied Soil Ecology, 108, 96–107.

 

2. Frew, A., Barnett, K., Nielsen, U.N., Riegler, M., Johnson, S.N. (2016). Belowground ecology of scarabs feeding on grass roots: Current knowledge and future directions for management in Australasia. Frontiers in Plant Science, 7, 321.

​

2013___________________________________________________

​

1. Frew, A., Nielsen, U.N., Riegler, M., Johnson, S.N. (2013). Do eucalypt plantation management practices create understory reservoirs of scarab beetle pests in the soil? Forest Ecology and Management, 306, 275–280.

​

Frew Lab

©2023

bottom of page